
RD-A172 773 B(ASIC)-SPLINE BASICS(U) WISCONdSIN UNIV-KAOISON
MATHEMATICS RESEARCH CENTER C DE BOOR AUG 86
MRC-TSR-2952 DRAG29-8e-C-8841
UNCLASIFIE F/G 1/i

I EhhhhhhhhhhsoE
Ifffff..lflflflflmol

_ p _ommol



U.''

"II



MRC Technical Summary Report #2952

B(asic)-SPLINE BASICS

Carl de Boor

N

.1.
Mathematics Research Center
University of Wisconsin-Madison
610 Walnut Street

, Madison, Wisconsin 53705 DT IC
August 1986 

E CTE
OCT8 1986

(Received June 16, 1986)

C-,

.L l Approved for public release

-" " Distribution unlimited

Sponsored by

U. S. Army Research Office
P. 0. Box 12211
Research Triangle Park

North Carolina 27709

%6 10 %7 16
S,' ~' ",



UNIVERSITY OF WISCONSIN-MADISON
MATHEMATICS RESEARCH CENTER

B(asic)-SPLINE BASICS

Carl de Boor

Technical Summary Report #2952
August 1986

ABSTRACT

An expository and illustrated treatment of the basic B-spline theory as derived from
the recurrence relations.

p

AMS (MOS) Subject Classifications: 41A15, 65DI0

Key Words: splines, B-splines

Work Unit Number 3 - Numerical Analysis and Scientific Computing

Sponsored by the United States Army tinder Contract No. DAAG29-80-C-0041.

--ml



5I(NIFICANCE AND EXPIANATION

This report contains the lecture notes for ttie first of four lectures which comprise
the course entitled'"The extension of B-spline curve algorithms to surfaces' given at SIG-
GRAPM'86. It is an elaboration and extension of the MRC report 7.2896 by de Boor
and H61lig. in which the basic B-spline theory is developed from the recurrence relation
rather than the original definition in terms of divided differences of the truncated power.
This avoids what, to the people in CAGD. amounts to a detour through the theory of
divided differences. Somewhat surprisingly, the resulting development is no longer than
the standard one. and in some respects seems even more direct. It does bring to the fore
the dual functionals and stresses the point, that B-splines are best treated in terms of their
linear span.
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The responsibility for the wording and views expressed in this dfscriptie summary lies
with MRC. and not with the author of this report.
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B(asic)-SPLINE BASICS
Carl de Boor

0. Introduction

These lecture notes review those basic iacts about (univariate) B-splines which are
of interest in CAGD. The intent is to give a self-contained and complete development of
the material in as simple and direct a way as possible. For this reason, the B-splines are
defined via the recurrence relations, thus avoiding the discussion of divided differences
which the traditional definition of a B-spline as a divided difference of a truncated power
function requires. As this lecture is intended to show. this does not force more elaborate
derivations than are available to those who feel at, ease with divided differences. It does
force a change in the order in which facts are derived and brings more prominence to such
things as .MarsdeT's Identity or the Dual Functionals than they currently have in CAGD.

In addition, it highlights the following point: The consideration of a single B-spline
is not very fruitful when proving facts about B-splines, even if these facts (such as the
smoothness of a B-spline) can be stated in terms of just one B-spline. Rather, simple
arguments and real understanding of B-splines are available only if one is willing to consider
all the B-splines of a given order for a given knot sequence. Thus it focuses attention on
splines. i.e., on the linear combination of B-splines.

The lecture deals with splines for an arbitrary knot sequence and does rarely become
more specific. In particular, the B(ernstein-Bzier)-net for a piecewise polynomial, though
a (very) special case of a representation by B-splines. gets much less attention than it
deserves, given its immense useiulness in CAGD (and spline theory). But the third lecture
takes up this topic.

The lecture deals only with spline functions. There is an immediate extension to
spline curves: Allow the coefficients, be they B-spline coefficients or coefficients in some
polynomial form, to be points in IR2 or R3 . But this misses the much richer structure
for spline curves available because even discontinuous pararetrizations may describe a
smooth curve. This topic of geometric continuity is discussed in detail in the fourth
lecture.

The Ictiure note- are solidly based on [BH86 which covers more or less the same
material, in a less elaborate way and without any figures. in just seven pages.

The. relevant literature on (univariate) B-splines up to about 1975 is summarized in
B76 which also contains hints of the most exciting developments concerning B-splines

since then: knot insertion and the multivariate B-splines. These are covered in the second
lecture. but knot insertion is already put to good use in the last part of this lecture. The
two books on splines. B78 and 'Schu81., which have appeared since 1975, cover B-splines
in the traditional waly. As presentations of splines from the CAGD point, of view. the
survev article BFK84' and the "Killer B's- "BBB85.867 are particularly recommended.
Sponsored bv the United States Army under Contract, No. DA.AG29-80-0041.
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2 Carl de Boor

1. B-splines defined

We start with a partition or knot sequence. i.e., a nondecreasing sequence t
(t,). The B-splines of order 1 for this knot sequence are the characteristic functions of
this partition. i.e., the functions

Bilt) = X(t) 1, if ti S t < t,+l
B11(t) := X,(t)= 10, otherwise. (1.1)

Note that all these functions have been chosen here to be right-continuous. Other choices
could have been made with equal justification. The only constraint is that these B-splines
should form a partition of unity, i.e.,

B MB(t) = 1, for all t. (1.2)

In particular,
Sti = til == Bil = Xi = 0. (1.3)

From these first-order B-splines, we obtain higher-order B-splines by recurrrence:

Bsk :: ,'AkB,.-I (1 - W 4-1,k)Bi+1,k-I (1.4a)

with
t -: if t, -t+k- 1W t~k(t) :k t, - , (1 .4 b)10, otherwise.

Thus, the second-order B-spline is given by

1312 7: ,I2X, 0I - (4t4..s)-l

and so consists, in general. of two nontrivial linear pieces which join continuously to form
a piecewise linear function which vanishes outside the interval ti, ti+2!. For this reason.
some call B,, a linear B-spline. If. e.g., t, = t,+ 1 (hence X, = 0). but still t,, < t,-,.
then B, 2 consists of just one nontrivial piece and fails to be continuous at the double
knot t, = t,-, as is shown in Fig. 1.1.

.7, .

, ,, .q. .lp,. P ,., . t,,,k, .t t . r - , - ,v . ." '. , ,
*

- . % - , "' -- " . - ,' " "" " . - . " ° '" -"



B(asic)-Spline Basics

Figure 1.1 Liniear B-spline with (a) -simple, (b) double knots

Figure 1.2 Quadratic B-spline with (a) simple. (b) triple knots

4'%
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4 Carl de Boor

The third-order B-spline is given by

B 3 - .. :B:2  (0

-~(Ldz 3 (1 - t'-41,2) -4- (I -- Lit ,,)W< 4 1,2)Xi, 1  (1.6)

(1 -.. ,1,3)(0 - ,22

This shows that, in general, B,3 consists of 3 (nontrivial) quadratic pieces, and, to judge
from the Fig. 1.2, these seem to join smoothly at the knots to form a C' piecewise quadratic
function which vanishes outside the interval iti ,t+3'. Coincidences among the knots

1.. t would change this. If. e.g., ti - 4, 1 4 2 (hence X, - X+ = 0), then
Bi3 consists of just one nontrivial piece, fails to be even continuous at the triple knot t,.
but is still C' at the simple knot t~,,as is shown in Fig. 1.2.

/I

Iv- I.

B,,k V bkX7. (1.7)

with each b,k a polynomial of degree <k since it is the SUM of products of k I linear
polynomials.

From this. we infer that B,k is a piecewise polynomial of degree k which vanishes
outside the interval 1,- t,.-.k, and has possible breakpoints t ..... In particular, BAk
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is just the zero function in case t, t,-k. Also. by induction, Bk is positive on the open
interval Itt,t, -k since both Wtk and I -- W,.,1.k are positive there.

Wtk"I

I,

_ Wi-rl,k

t, ti 1 tt-k-1 ti-k

Figure 1.4 The two weight functions in (1.4a) are positive on 1tt,t,,k'=-
supp 3 ,k.

Further. we see that Bik is completely determined by the k'+ 1 knots ti, ti -k. For
this reason. the notation

..' , B('[ti, ....,ti+k) := Bik 1 )

is sometimes used. Other notations in use include

Nik := Btk and M!k := (k./(ti4k - t1))Bik. (1.9)

The many other properties of B-splines are derived most easily by considering not
just one B-spline but the linear span of all B-splines of a given order k for a given knot
sequence t. This brings us to splines.

2. Splines defined

A spline of order k with knot sequence t is, by definition, a linear combination
of the B-splines Bk associated with that knot sequence. We denote by

Sk,t Btka : a, -_ } (2.1)

the collection of all such splines.

We have left open so far the precise nature of the knot sequence t. other than to
specif. that it be a nondecreasing real sequence. In any practical situation, t is necessarily

i ,, Tj . : 'z q'. ' .. T .;• " ',7 "V :':. ,x.,- - -.-:,. , .,. --.'x% ; :.v,- ..7,' . ,



I> Carl de Boor
a finite sequence. But, since on any nontrivial interval it3,t,±,, at mrost k of the Bik

.~ ., are nonzero, viz. B3 -k+l,ki*. . 5,B,,, it doesn't really matter whether t is finite, infinite.
or even bi-infinite: the sum in (2.1) always makes pointwise sense. since, on any interval
tj, t3 -f at most k summands are not zero.II0

Figure 2.1 The k 8-splines whose support contains ,t3 , t3.,.i

We will pay special attention to the following two "extreme" knot sequences. the
sequence

and the sequence I

'4A spline associated with the knot sequence 27, is called cardinal splines. This term
was chosen by Schoenberg 'Scho(49 because of a connection to Whittaker's Cardinal Series.
This is not to be confused N Ith its use in eariier spline literature wbere it refers to a spline
which vanishes at all points in a given sequence except for one at which it takes the value

* 1. The latter splines. though of great interest in spline interpolation, do not interest us
* here.

Because of the uniformity of the knot sequence t -- 7. formulae involving cardinal
B-splines are often much simnpler than corresponding formulae for general B-splines. To

*begin with. all cardinal fl-,splries (of a gluei order) are trandotefs of one another. With
the natural indexing t, i. ifor the entries of the uniform knot sequence t - Z. we
have

13, k- Nk(2.2)

Nk Bk B(. ()..k). (2.3)

%;~
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The recurrence relations (1.4) simplify as follows:

(k- ])Nk(t) =tNkl(t) + (k - t)Nk (t )- (2.1)

The knot sequence t = 13 contains just two points, viz., the points 0 and 1. but each
%,. with infinite multiplicity. The only nontrivial B-splines for this sequence are those which

have both 0 and I as knots, i.e., those Bik for which t, = 0 and t,+k = 1. There seems to
be no natural way to index the entries in the sequence 13. Instead. it is customary to index
the corresponding B-splines by the multiplicities of their two distinct knots. Precisely.

B(,) := B(.i 0,... 0, 1, ... , 1). (2.5)

g+! times v+1 times

With this, the recurrence relations (1.4) simplify as follows:

B B (t) t B 1) (t) + (1 -- t)B(M,_.l,)(t). (2.6)

This gives the formula (+ V
.B, ()=(I - t)Atv for 0 < t < 1 (2.7)

for the one nontrivial polynomial piece of B(,,,j, as one verifies by induction. The formula
enables us to determine the smoothness of the B-splines in this simple case: Since B(,.-)
vanishes identically outside ;0. 1., it has exactly v -- I continuous derivatives at 0 and

I - continuous derivatives at 1. This amounts to v smoothness conditions at 0 and
)u smoothness conditions at 1. Since the order of B(,,,,) is u - V _z 1. this is a simple
illustration of the generally valid formula

,ttsmoothness conditions at knot - multiplicity of knot order. (2.8)

For fixed p --L. the polynomials in (2.7) form the so-called Bernstein basis (for
polhnomials of degree < p - LI) and. correspondingly, the representation

2..P B B(, ,,a(,., I (2.9)

is the Bernstein form for the polynomial p 77h. In ('A(D. it is more cuslomar\ to
refer to (2.9) as the Bzier form (for the polynonial p) or as the B6zier polynomial or
even the Bornstein-Bzier polynomial. It may be simpler to use the short ier:n B-form
instead.

. . .. . . . . . .. .. .. . .... . . .%: .-; .- ,_. ...-..-....... . . .. ., ..... ..... ...-...... -, --.. .. . ,' -- '-' :
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Figure 2.2 Bernstein basis of degree 4

3. A simplifying assumption

In the next sections, we develop the basic B-spline theory by studying the spline space
5k.t, i.e.. the collection of all functions s of the form

s = ,Bika, (3.1)

for a suitable coefficient vector a = (as).

In practice, the knot sequence t is always finite, hence so is the sum in (3.1). This
often requires one to pay special attention to the limits of that summation. Since I find
that distracting, I will assume from now on that the knot sequence t is bi-infinite. This
can always be achieved simply by continuing the sequence indefinitely in both directions

. -. (taking care to maintain its monotonicitv) and choosing the additional B-spline coefficients

to be zero.

More than that. I will assume that

t, lim t, :( ( 2)

This assumption is convenient since it ensures that every IR is in the support of some
f3-spline.

lunra -'.'r 5 ,' w ,"","" -''. ,-"'o, ' - -J,/-"-" ' .-. ." ' , . ,.,,,.,-"- , ,''""' .'''';- ' ' ' '' .•. " ' ' -

,d' J' ." 4 ,,
•

,.., ..- J . . ,. -.. .. . " "- - '- - " "- "-" *' ' - ' .5z ' .- '- '5 ' "" " "' - " "
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At times, it will be convenient to assume that

t, < It+k Vi (3.3)

which can always be achieved by removing from t its i-th entry while 62=ti-k. This
does not change the space Sk,t since the only k-order B-splines removed thereby are zero
anyway. In fact, another way to state the condition (3.3) is:

Bik O Vi- (3.3')

4. The polynomials in Skjt

We show in this section that Skt contains

r,< k :=the collection of all polynomials of degree < k,

and give a formula for the B-spline coefficients of p E 7r<,k.

We begin with Marsden's Identity:

Theorem 4. For any r E IR,

.k- I)' ZBsktikir, (4.l1a)

I. with

l~'~~rJ:= t~ - r (t~k.1 -r).(4.l1b)

Proof We deduce from the recurrence relation (1.4) that, for an arbitrary coefficient
sequence a.

Y, Bikaj B,- 1 ((I - Witk) a - -4- tkat). (4.2)

On the other hand. for the special sequence

a1 := 7'ik(7) := (i.1- r) . (ti+k- 1 - T)

.4(with 7 E- III). we find for Bi,k-1 - 0. i.e., for t1 < t,-i-k.i that

(1 -ka~~,jka, ( Wik)(t, - r) L ik (ti- k- j - T) )~k. - I(r)

since (I - zikf(t,) -wik! (t,±k-1) is the straight line which agrees with f at t, and t1 .k J.
hence must equal f if, as iii our case, f is linear. This shows that

Bt1z.)T ik-IW4-17)

*-:. W~ I'
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hence, by induction, that

E Bikk(r) = - r) k -' > BW,(r) (.-)-.

since tiI(r) = 1 and -'B- i = 1 (see (1.2)). i

Remark There may be some doubt as to why i,1 should be identically equal to 1.
From the definition (4.1b), it would appear that Oil is the product of no factors, hence,
by a standard agreement concerning the empty product, equal to 1. This is the definition
appropriate for use in induction arguments. Indeed, if you consider the coefficients in (4.2)
for k = 2 directly, you get

(1 - ,,, 2)O.- 1 ,2 (r) + L0, 2 ,02(7) (I- L 2 ) (ti - r) + U42" (t. 1 - T)

which agrees with (4.3) for this case if we set Oil (r) 1.

Since i- in (4.1) is arbitrary, it follows that Sk,t contains all polynomials of degree < k.
More than that, we can even give an explicit expression for the required coefficients, as

follows.

By dividing (4.1a) by (k - 1)! and then differentiating it with respect to r, we obtain
the identities

k i ( - ) " i() > 0, (4.4)

with Df the derivative of the function f. On using this identity in the Taylor formula

k (. - r)k-P D k -
E (k-)!
V=1

valid for any p E 7r<k, we conclude that any such polynomial can be written in the form

p '7 BikAikp. (4.5a)

with Ak given by the rule
k ( D) , k(r) k

,ikf/:= E -- Dk -f(r). (4.5b)k=, (k- 1)!

Here are two special cases of particular interest. For p 1. we get

I B (4.6)
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since Dk- 1,k = (-1)k-l(k - 1)!, and this shows that the Bik form a partition of unity.
Further, since Dk-2,tk is a linear polynomial which vanishes at

t, :=- (ti+1 +i.. t ;-k- ),/(k -1), (4.7)

we get the important identity

p=Z Bikp(t') Vp E 7r. (4.8)

Remark In the cardinal case,

1k(7)/(k- 1)! ( k - I (4.1b)Z

while in the Bernstein-Bizier case,

-, (-r)(1 _ = (_).B(u, ,),i( + (4.1b)M

5. The pp functions contained in Skt

In this section, we show that the spline space Skt coincides with a certain space of
pp( := piecewise polynomial) functions.

Each s E S.t is pp of degree < k with breakpoint sequence t since each Bik is pp of
degree < k and has breakpoints ti,... ,t-. k . In symbols.

F " (5.1),'-Sk,t 9 c kt

But Sk,t is usually a proper subspace of lr<kt since, depending on the knot multiplicities

:= t, = t,}, (5.2)

the splines in Skt are more or less smooth, while the typical element of 7t<k,t has jump
discontinuities at every ti.

For the precise description, given in Theorem 5 below, of the smoothness conditions
satisfied by the elements of Sk.t. we make use of Marsden's Identity, (4.1), since it provides
us with the B-spline coefficients of various pp functions in Skt, as follows.

7 qV1



12 Carl de Boor

Bi,

tt t,-l 44 2 = ti+3 4t+4

Figure 5.1 B,4 and V44; note the double knot

Since Bik(t,) 0 implies 1tk(tj) = 0 (see Fig. 5.1), the choice r = tj in (4.1) leaves only
terms with support either entirely to the left or else entirely to the right of tj; see Fig. 5.2.
This implies that

(. - t)Bk k(tj) (5.3)

with
max~r,0}(5.4)

the positive part of the number a. More than that, since Bik(t3) 0 implies D' - 'tkik(tj) =
0 in case v < 0t,, the same observation applied to (4.4) shows that

(tj).v : Sk,t for I < v_< #tj.(55

Theorem 5. The space Sk,t coincides with the space S of all piecewise polynomials
of degree < k with breakpoints t, which are k - I - #1, times continuously differentiable
at 1,.

Proof Assume without loss of generality (see Sec. 3) that

t, < t +k Vi.

It is sufficient to prove that. for any finite interval I := a, b', the restriction S, of the space

to the interval I coincides with the restriction of Sk.t to that interval. The latter space
is spanned by all the B-splines having some support in I. i.e.. all B,k with (t,. t, k). I :- 0.
The space S1j has a basis consisting of the functions

(.-a) k - ,. v k (. K ..... 1t,. for a < t, < b. (5.6)

4A. W-
,  -

%..-
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Figure 5.2 The summands Bi3 0i 3 (tj) and their sum, (.-j)

Figure 5.3 The summands Bia3 i3 (tj),i >_ . and their sum, (. -)

This follows from the observation that a piecewise polynomial function f with a break-
point at t, which is k - 1 - #t, times continuously differentiable there can be written

* uniquely as
# t,

P+ +

a,= I

with p a suitable polynomial of degree < k and suitable coefficients c,. Since each of the
functions in (5.6) lies in Sk.t, by (5.3) and (5.5). we conclude that

, (Skt (5.7)

@ d'" %



14 Carl de Boor

V ................

Figure 5.4 (a) The six quadratic B-splines for the case of one simple and

one double interior knot: and

(b) the corresponding truncated power basis.

On the other hand, the dimension of S,, i.e., the number of functions in (5.6), equals the

number of B-splines with some support in 1 (since it equals k + 0 a" #t,j, hence is an

cpper bound on the dimension of (Skt)I,. This implies that equality must hold in (5.7).

which is what we set out to prove. !I!

Remark The argument from Linear Algebra used here is the following: Suppose

that we know a basis, (fl, f2,... , f,,) say, for the linear subspace F, and that we further

know a sequence (gi,g2,....9m) whose span, G say, contains each of the fi. Then, of

course, F C G and so

n= dimF< dimG<m.

If we now know. in addition. that n -= m, then necessarily F z. G Moreover, then

necesarily dim G -- m. i.e.. the sequence (g 1,g 2 .... ,gn) must be linearly independent

(since it then is minimally spanning for G). In our particular sit ual ion. this last observation

implies that the set of B-splines having some support in I must be linearly independent

over 1. We pick up on this in the next section.

.%

N"4
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6. 'B' stands for 'BASIC*

In this section. we discuss the basis property of the B-splines. as a consequence of
Theorem 5 and its proof.

From the Remark following Theorem 5, we obtain the following sharpening of Theorem
5.

Theorem 6. Let I :a, bi be a finite interval. Then the restrictions

{Bk, : Bikl, # 0} (6.1)

of those B-splines which have some support on I form a basis for the space of pp functions
of degiee - k on I with breakpoints {t, : a < tj < b} and which are k -- 1 - #t, continuouly
differentiable at. each of their breakpoints t,.

We conclude that the number of smoothness conditions at a knot t, guaranteed to be
satisfied by every spline in Sk,t equals k - #t,. This proves the formula

-#smoothness conditions at knot + multiplicity of knot = order (2.8)

cited earlier (in connection with the Bernstein-B6zier form).

It is wort iwhile to think about this the other way around. Suppose we start off with
a partition

.,... a =z: Cc < ,c2 < ... < 'Ee < C1-.1 :-- b

of the interval I :-= :a b and wish to consider the space
.'-.

W< k, c

of all pp functions of degree , k on I with breakpoints , which satisfy 1 smoothness
conditions at i.e.. are L,, I times continuously differentiable at c,,Vi. Then a B-spline
basis for this space is provided by (6.1). with the knot sequence t constructed from the
breakpoint sequence c in the following way: To the sequence

1 . ..... . (6.2)

times ,. times ,, times

adjoin at the beginning k points < a and at the end k points : b. While the knots in
(6.2) have to be exactly as shown to achieve the specified smoothness at the specified
breakpoints, the 2k additional knots are quite arbitrary. They are often chosen to equal a
resp. b. and this has certain advantages (among other things that of simplicity). With such
a choice, it is necessary to modify the definition (1.1) so a- to include the right endpoint.
b. into the support of the rightmost nontrivial B,1 . In other words. if n i such that

. jb.

,5. * ,..'
Y°"b

: • ,,; 'J . - %" , , € , . ,,. - , . ,, . . ,. - .. ,- ,.,,. . , - .%



16 Carl de Boor

then
B, , t , if ti S t < b (6.3)

B, 1 (t) : XL(t) '= 0, otherwise.

This ensures that, in evaluating a spline or its derivatives at b, we obtain the limit from
the left.

The identification of Sk.t with a certain space of pp functions allows the following
conclusions of importance in calculations to be discussed later.

Corollary 1. If ti < t ,+k-1, then the derivative of a spline in Sk,t is a spline of
degree < k - I with respect to the same knot sequence, i.e., DSk,t Sk-I,t.

Proof By assumption, #t, < k, hence the pp functions in Sk,t are continuous,
therefore differentiable (if we accept a possible jump at ti in the derivative Ds of S E Sk,t

in case #t -= k - 1). Further, such a derivative Ds is pp of degree < k - 1 and satisfies
k - #t, - 1 smoothness conditions at ti, hence belongs to Sk-1.t, by Theorem 5 or 6. Ifl

Corollary 2. If i is a refinement of the knot sequence t, then Sk,t C Sk i .

Proof Since t is a refinement of t, i.e., contains entries in addition to those of t,

the pp functions in Sk,t satisfy all the conditions which, by Theorem 5 or 6, characterize
the pp functions in Ski. (But the converse does not hold, since the pp functions in SkJ
may have more breakpoints and/or may be less smooth at some breakpoints than the pp
functions in Skt.) !-

These corollaries point out that it should be possible, ip principle, to compute from
the B-spline coefficients of a spline in Sk,t the B-spline coefficients of its derivative and its
B-spline coefficients with respect to a refined knot sequence. To carry out such calculations,
though, we need a means of expressing the B-spline coefficients of a spline in terms of other
information, such as its values and derivatives at certain points. If the spline happens to be
a polynomial, then such a formula is provided by (4.5). We show in the next section that
the same formula works for any spline (provided we are willing to restrict the parameter
r suitably).

7. The dual functionals

In this section, we prove that the formula (4.5) for the B-spline coefficients r a
polynomial is valid for an arbitrary spline provided we restrict the parameter T in the
definition

A,k i f D f (7-  (4.5b)Dk

(k-l)!

to the support of Bk.

. % %

4. 1



!B(asic)-Sphine Basics )7

For this, we agree. consistent with (1.1b), that all derivatives in (4.5b) are to be taken
as limits from the right in case -, coincides with a knot (except, perhaps, when r is the
right endpoint of the interval of interest, see (6.3)).

tj tl-+ I

Pl-I

Figure 7.1 The three polynomials, pl- 2,p,-j..pj, which agree with some
quadratic B-spline B : on the knot interval it t, t t ! .

Theorem 7. If r in definition (4.5b) Of Aik is chosen in the interval iti, ti+ki, then

A,k ( B, ka,)7:a,.(.1

Proof We prov-e that, under the given restriction,

,\i~ j - bj : 11. if I -- ;(72
Ai,~k 6, :=0, otherwise. .)

4.

- " Assume I hat 7 1, it, t' : 'tt .Then (7.2) requires proof only for j 1- k - ,..
since. for all other J. I -t j and B3 vanishes identically on ;ltj, tj- 1' hence also AikBjk =- O.

'For each of the remaining j's. let p., be the polynomial w-hich agrees with B;k on :tl, ti. Il
~Then

~On I he other hand,

P) :-Z Pi AikPj (7.3)

'"Sk~

' ,¢,..7 ,Z' C.: . :c& _Z o ... . . . ,.. .Vr, .k ,~ .,.
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since this holds by (4.5a) on jtt,ttu . This forces AkP 3, hence AkBjk, to equal 6i, for
i,j = I - k + I,... ,, since, by Theorem 6 or directly from the fact that (4.5a) holds for
every p E 7r<k, the sequence

PI-k-t- 1,'" P1 (7.4)

is linearly independent.

Remark The argument used here is that, for a linearly independent sequence

(fU.... ,f,). the only way the equation

n

3=1

can hold is for a,, to equal I for i = j and zero otherwise. Further, the linear independence

of the sequence (7.4) follows from the validity of (4.5a) for every p E 7r<k since that implies
that the k-sequence (7.4) is spanning for the k--dimensional space 7r<k. It also follows

from Theorem 6 with I =

The two sequences, (Bik) and (A,k), are said to be bi-orthonormal or dual to each
other because they satisfy (7.2). For this reason, the linear functionals Aik are at times

referred to as the dual functionals for the B-splines.

We exploit the simple formula (7.1) for the i-th B-spline coefficient of a spline in

subsequent sections, in order to derive algorithms for differentiation and knot insertion and,

ultimately, to derive statements about the condition and the shape-preserving property of
B-splines.

m,,

100 101

Figure 8.1 The power coefficients of these two very different linear poly-

nomials differ by onl 0. 1.

4

%- %

X'%~
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8. Condition

The condition of a basis measures how closely relative changes in the coefficients are
matched by the resulting relative changes in the element represented. The closer the match,
the better conditioned the basis is said to be. For example. the power basis 1.t,t 2 .... is
not a good way to represent polynomials if we are interested in a positive interval (a, b
with a/b close to 1. If, e.g., ra, b = [100, 101. then a 0.1% change in the power coefficients
of the straight line p : t -- t - 100 can change its behavior on i100,101i by 100/; see
Fig. 8.1.

If we use the appropriately shifted power basis. e.g., write p in the form p(t)
o -- 3(t - 100). then a .1% change in the coefficients a,3 of this form produces a .1%
change in the polynomial on the interval 1100, 101'. The appropriately shifted power basis
is often much better conditioned than the power basis. In this section. we discuss briefly
the condition of the B-"pline basis.

This requires us to bound the spline in terms of its B-spline coefficients and the B-
spline coefficients in terms of the spline. The first turns out to be easy, while the second
requires some work. Precisely, we are looking for constants m > 0 and M for which the
inequalities

rmax !ail < max: Bk(t)a < M max a,(.
t S.

hold regardless of what the coefficient vector a = (a,) might be. Since the B-splines are

nonnegative and sum to I at any point, we have

SBik(t)a, < - Bik(t);ai < Bik(t) maxa,i =max :ai',
I $

hence the second inequality always holds with Ml = 1. For the first inequality, we have to
work a little harder.

Set s:- , 1kai. We know from Theorem 7 that

* a1 = ~k S :-- (DVli(T DkT (8.2)
(k- 1)!

with 7 some point which we can freely choose in the interval t,. t,k. We now bound this
sum in terms of maxt s(t)!.

Suppose that r E tt, ti,ti~k. Then, for some constk depending only on k.
and for all p C 7r<k and all 3.

.D)p(r), constk (Ati) -  max p(t). (8.3)

The existence of such a constk follows for the case At, 1 from the fact that 7r<k is
fi ,ile-dimensional. and from this it follows for arbitrary At, by scaling. Since S agrees
with some polynomial of degree < k on tj.tj-1 . we conclude that

Dls(T) K constk (At,) -  max ,(t) (8.4)',..,t,<t, t-,

'7% P, ) .W :w'.'. J','V ',* % *; %% " _% " .,% . ,,":J, i .~ jr.,*4%.% '" , j.--%-
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On the other hand, t'ik = (t,4 - .)... (t,- - ") is also a polynomial of degree < k, and

max t 'ik(t) const At- k- 1 (8.5)

for some constk which depends only on k and with lj.,tp.j, a largest interval of that
form in !t,,tk'. Therefore we choose I = l" and then obtain, from (8.3) with p = O,k and
from (8.4), the bound

D11-1 ,ik(r)Dk_,,S(7) < (const, )2const' max ls(t);.
kt, t<t,-&

Now sum these bounds over v and divide by (k - 1)! to obtain

ail = ;Aiksl < const max s(1):.
t' <-- '.

N ith const depending only on k.

We have proved the following

Theorem 8. There exists a constant Dk depending only on k so that, for all knot
sequences t and all s E Skt, and for all i,

AtkSl < Dk max s(t). (8.6)
t, <t t, *k

The best value for Dk is not known exactly but there is strong numerical evidence
that Dk - 2 '-I. If we only consider cardinal splines, i.e.. only uniform knot sequences,
then the best value for Dk is known to be less than (7r/2)k.

Corollary. The inequalities (8.1) hold with m = 1 Dk and A = 1.

9. Evaluation

In this section, we discuss the use of the recurrence relations (1.4) for the evaluation
of a spline

>= Bka, (9)

from its B-spline coefficients (a,).

We already observed in (4.2) that the recurrence relations imply

B ,ka, B,.k -a,(9

with
a , - 1 ', k) G, I " -',ka ,. 9 .a

. l, - ' u
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Note that a is not a constant, but is the straight line through the points (t,,a,_1 ) and

(t,.kl.a,). Inparticular., al(t) :s a convey combination of a,-., and a, if t, < t < t,-k-.

After k - 1-fold iteration of this procedure. we arrive at the formula

s Bilo

which shows that
k- 1,

Algorithm 9. From given constant polynomials a'" aj, i k- I,
(which determine s Bika, on P tj.t generate polynomials a, r 1,... k- 1.
by the recurrence

r (1- I.', ' _z)k -r() -. ,-a 1
T, j- k--.r <i j. (9.4)

Then s -a -. Ool on1 t,.'* Moreover, for t, < t < t the weight (-tk- I) in (9.4)
k-I

lies between 0 and 1. Hence the computation of .(t) a: ak- (t) via (9.4) consists of therepeated formation of convex combinations.

In the curdinal case (see Sec. 2, esp. (2.2-4)), the algorithm simplifies, as follows. Now

'.i-: N (.\ - i)a, Nk-,(.- i)a1  '(k - 1).

with
a, :=(i -k-- - .)a,_-i-('-i)a,.

Hence 'k-!

, a oa (k- 1)! on j.j 1,
-.. with (9.4)2

a. : - k - r .) (. )a k r

In the Bernstein-Bizier case (see Sec. 2, esp. (2.5-9)). all the nontrivial weight func-
lions .A are the same, i.e..

;;,,k-

Thus. for

we gel

-p4

.-. . ...........-.. ....-..-......... ,"tS"- -.- ,-",'.~ ' : N , ,, s ,-,-,,
-

" .. '.. .~ * . *., .',',--. -
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$a(Qj,O) on jo, I.,

4.with (9.4) B

This is de Casteljau's Algorithmi for the evaluation of the B-form.

10. Differentiation

"4, In thi5 section. we derive a formula for the B-spline coefficients of the derivative of a
spline in terms of the B-spline coefficients of the spline.

By Corollary I to Theorem 6, the derivative Ds of a spline s g- SkJt is again a spline
with Ihe same knot sequence but of one Order lower. This means that. by Theorem 7, we
can compute its i3-spline coefficients (a,) by the formula

a - A .ki (Ds)

provided we use T E

TO relate a to a. we express A,klD as a linear combination of the functionals Ask,

making use of the fact that A~k depends linearly on T~ik,-~ recall the definition

A ~(k-f1)k

and that
(t" - k- I ) V.k - I W-',k Vi - 1,k* (IA

These facts imply that

A, - l~k~f (I (k -I)!- -- D

k-i

(t~~ E --- D -(f)L 
1 ~ t)pk Lf(

the last equality by (10.1) and since J)k V,.k- -0. On the other hand, directly from
the definition (1.5b),

- - kk- I
A,.k i Df( ~ (k )' ,i '"J

k I)) it', k( 1~ (7f
(k 1))() I)

..................................
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Comparison of these two displays shows that

A1 .k.I.D = k I A 1 .Ik). (10.2)ti-, k- I t,

Assuming that Bi,k-I - 0, i.e., that t? < ti+k-1. we can choose r E (tt,t,+k-1)
(t,- 1, ti-k-1) 'I- (ti, t,-k). This yields

Algorithm 10. Compute the coefficients for aBik_ DV"aBk by

, ai - ai- 1 (10.3)
a, if ti < tik-1. (03a,= (t,,k-I -- ti)!(k - 1) 'ift < t.-, .

Remark What happens when ti = ti-k-l? In this case, Bi.k-I = 0, hence there
is no need to calculate a'. To be precise, in this case, the spline s = .-, Bka may not
even be continuous at ti, therefore (Ds)(ti) makes no sense. On the other hand, the
left and the right limit, (Ds)(ti-) and (Ds)(ti+), always make sense, and the algorithm
would provide all the a' 's needed for their calculation. By applying the algorithm to the

particular coefficient sequence a = (6bj), we obtain the formula

k-I k-1
DB~k - BI k- -DkB k -Bi,k- - Bi+ 1,k- 1. (10.4)

ti-, k-1 - ti ti+k - ti-I

In terms of the alternative notations (1.9) for B-splines, this reads

DNik = Mi,k-1 - M,- l,k- I

Since ,K-, Nik =- 1, this implies that

]M,,k- 1 (10.5)

and so indicates why the particular normalization

k
Mik .- Bk

t,-k t

is of interest.

In the cardinal case, (10.3) reduces to

a, a, - a, - Va, (10.3)27

and (10.4) reads
D ,,'k = _ - .k_ (. - I). (10.4)2z
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On integrating this formula, we obtain

Nk (t) = N ()d- (10.6)

since both sides of (10.6) vanish for negative t. in terms of the convolution product

(f * f)(t) := / f(t - r)g(r)dT

of two functions f and g, this gives the important formula

Nk = Nk -I * N (- + 1). (10.7)

This shows that Nk(- + k - 1) is the k-fold convolution product of N1 , i.e.,

Nk(. + k - 1) = N *N 1 *...* N.

k terms

In the Bernstein-Bizier case, we get

D E B(A,)aM,,)= j B(,.,)a,)
Ip+v=h +=h1

with (10.3)IB

a = (i + v + 1)(a(,,+,1,) -

11. Knot insertion

In this section, we discuss the most important CAGD contribution to (univariate)
spline theory, viz., the idea of knot insertion (a.k.a. subdivision). Since the spline order,
k, will not change in this section, we will usually suppress it and write Bi instead of Bk,

iV, instead of Oik, etc.

Simply put, knot insertion involves rewriting a given spline as a spline with a refined
knot sequence, as can always be done by Corollary 2 of Theorem 6. Such a calculation is
worthwhile since the B-spline coefficients are nearly equal to values of the spline at known
points, and this is more nearly so when the knots are closer together. Here is the precise
statement.

Theorem 11. If the spline s = B,a, is continuously differentiable, then

:a, - s(t;) _; const t 2 sup.D 2s(t). (11.1)

Iw
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with
ti : (ti+I + ti+2 - ti-k-I)I(k - 1) (4.7)

and
itI := sup(ti-I - t').

Proof Recall from Sec. 8 that

!ai = IAjsI < const max ls(t)I. (8.6)
t. <t<ti A

Further, recall from Sec. 4 (esp. (4.8)) that

Aip =p(t;) "Vp E 7r.

Thus, choosing, in particular, p:= s(ti) + (.- t;)Ds(tI), the linear Taylor polynomial for
s at Gwe get

la, - s(t,)! = jai - p(t,*)i = !Ai(s - p)l < const max !(s - p)(t)It, <t<t, -

(t,-k - t,) 2

-' const max ID2 s(t).

*: Figure 11.1 A cubic spline and its control polygon. The end knots are
quadruple.

This suggests consideration of the control polygon associated with the representa-

tion -, B1a, of the spline 8 as an element of St. Thik control polygon will be denoted
by

C".

% ,

_~~~~~~~~~~~W vanowd<"J''. ' I,,W4' ...,7," ." ",.'. .....'
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It is the broken line or piecewise linear function with vertices P, := (t;,a,). For, the
theorem implies that the control polygon will be close to s if t: is small. Here is the
precise statement.

Corollary. Let C,.t be the control polygon associated with the representation
V, Bia, of the continuous spline s as an element of St. Then

sup Is(t) --Ca,t(t) < const t. 2 sup D 2 s(t). (11.2)t t

Proof Let t' < t < t;., and let p be the linear polynomial which agrees with s at
t," and t+,. Then

s(t) - p(t)I _ jt;,1 - t; 2/8 max !D2s(r) I

t' < r<t*

while

p(t) - Cat(t)l < max{!s(t) - aj,!s(tj+) - ,ai 4 } < const jt 12 max D s (r ),

by the theorem.

Figure 11.2 The control polygon of Fig. 11.1 and three midpoint refine-
ments.

This shows that the control polygon C,.t converges to the spline s as we refine the
knot sequence t. Since the typical graphical equipment only draws broken lines. anyay.
this makes it attractive to construct refined control polygons for a spline.

For this. we need to know how to compute. from its B-spline coefficients a, as an
element of St. the B-spline coefficients b, for the spline s with respect to a refined knot
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sequence t. By Theorem 7, this is a question of comparing the corresponding A, with A,.
Since the dual functional

.:A,:f (-D)V-1tV' (T) D k , r (.b
A°•f r,=Z -(k- I)!

depends linearly on io, this requires nothing more than to express

?,= (ii+ . -. i,+ _k - .)

as a linear combination of the ip,.

This is particularly easy when t is obtained from t by adding just one knot, say the
point i. Then

" V:, it < _ :

hence there is some actual computing necessary only for t, < t < t,-, . For this case.

( x ' i - I - ,O : ( t , _ ,I - . .." ( t t , - 2 - '} ' ( t , - ")( t , + k _ - .) ]

provided a(t, .) + (it, i-- - (i- ), i.e.,

= 1- ,() and )3 = wi(t).

Since 1, t = k, we can choose r in the definition (4.5b) in the interval
(tiik) = it, t-, _ 1 ; ) (t t,,.k). This proves

Algorithm 11. If the knot sequence t is obtained from the knot sequence t by
addition of the point i. then the coefficients h, for the spline s with respect to the refined
knot sequence are given by

ai, if t,-k.-I < i;
I 1- w, (t))a, , w, (t)a, if ti< < t,-k-.1; (11.3)

ai-if i < t,.

Observe that wi(t) t :0. iI when ti < t < t,+k --. and thus the coefficients i are convex
combinations of the coefficients a.

This algorithm has the following very pretty graphical interpretation.

Corollary. The refined control polygon C,.i can be thought of as having been ob-
tained by interpolation at its vertices to the original control polygon Ca.,, i.e.,

Caui(t) Ca.(t;) for all i. (11.4)

V. ". V " -0
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Proof Consider the straight line p: t p-. t. It is a spline and, by (4.8),

i.e., (t') is its B-spline coefficient sequence with respect to the knot sequence t. In partic-
ular, it is its own control polygon. i.e., Ct,t = p, regardless of what the knot sequence t
might be. This implies that (11.3) also holds with every a replaced by V. !11

This says that the point t'i := (t.,) lies on the segment [Pj_1 ,P' and cuts this

segment in the ratio (i-t.) (t_,k-I -t). This is illustrated in Figure 11.3 for the control
polygon of Figure 11.1.

t -n / t j

PjI

tj.?- 2  *j 3

Pi.

Figure 11.3 Insertion of i = 2 into the knot sequence
t = (0,0,0,0,1,3,5,5,5,5), with k = 4.

If r #i < k - 1, then, after just (k - 1 -- r)-fold insertion of t. we obtain a knot
sequence i in which the number i occurs exactly k - I times. This means that there is
exactly one B-spline for that knot sequence which is not zero at i. Hence it must equial I
at i and its coefficient must provide the value of s at t. This makes it less surprising that
the calculations in Algorithms 9 and 11 are identical.

ApAC%.,
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* Figure 11.4 The cubic spline and its control polygon from Figure 11.1 and
the sequence of control polygons generated by three-fold inser-
tion of the same knot. (The finest control polygon differs from
its predecessor only by an additional vertex point.)

-'I

Figure 11.5 Conversion to B-net by (k - 2)-fold insertion of each knot

Conversion to B-net Let t' be the refined knot sequence which contains each of
the knots in t exactly k - I times. Then each corresponding B-Spline BI, is nonzero on
just one knot interval, hence coincides there %%ith a properly shifted and scaled element of
the Bernstein basis. The k B-spline coefficients a; associated in this way with a knot
interval therefore provide the coefficients in the B-form for the polynomial with which the
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spline agrees on that knot interval. The coefficient sequence (a'), or the control polygon

Ca't,. are called the B-net for the given spline. It can be obtained by inserting each knot

t, of the spline k - I - #ti times. The process can be speeded up slightly by inserting

first every other knot, and, in a second round. inserting the remaining knots. The latter

insertion process is then entirely local and depends only on the ratio of the two knot
intervals containing the knot being inserted.

While the formulas do simplify for the cardinal case, they are not of much use in that
form since insertion of one knot into the sequence t=lZ would destroy the uniformity of

the knot sequence. But. it makes good sense to develop formulas for inserting the same

number of uniformly spaced knots into every interval i, i + 1 since this produces again a

uniform knot sequence. Because of its practical importance, we treat this case separately,

in the next section.

12. Knot insertion for cardinal splines

In this section. we contider knot refinement for cardinal splines, i.e., splines with
a uniform knot sequence. Here it is desirable to have the refincd knot sequence again
uniform. We restrict attention to the case that the given knot sequence is t=2z. This is
Do real restriction since an arbitrary uniform knot sequence can always be written in the
form a 3Z for appropriate qcalars a and 3. and if s is a spline with that knot sequence,
then s(r -,- 3.) is a spline with the knot sequence 7Z.

If we insert rn -- I uniformly spaced knots into every knot interval of Z, then the
refited knot sequence is t - 7] 'm. The corresponding B-splines B2t are

~B, = :(-i)

with
Nk(t) := k(int)

an appropriately scaled version of the standard cardinal B-spline Nk. This makes it trivial
'p* to determine a, in case k 1. Since

.N , - , , - :) - .. ... , 1), (12.1)

-we find for this case that

i,,+ - a, for j ..... r -- .

The formula for general order k is obtained from this with the aid of the convolution
formu la

- , ( ' 1) (10 .7 )

Irom Sec. 10. as follows. We define

"' :- EN"4 i)a, •VE "  I,0i,. r -. k. (12.2)

, /%
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Then a, - aik, and, from (10.7) and (12.1),

= ~

rSrY: Sr( Nj(- 4,- 1);)

SJ .1 (. - i - + /M

Here, we have used the following consequence of the convolution formula (10.7):

! - ), ,( -a)) =0 f v,- C,,(mC. - r) - oa) .x (m,. - - 3)d,"

f ,,-,(m'-<-a +3 -<o)j',(cr)d<,!,,

i We conclude that

, ai,- I : (aj., - aj+lr-.. + ai+m- 1,r) /'rr, for r > 0. (12.2)

Here is the full algorithm.

Algorithm 12. Given the B-spline coefficients a = (a,) of s E Skzz, its B-spline
coefficients a = (a,) with respect to the refined knot sequence 7Zim can be computed as
follows:

~M-1
" ami~~j~l - a,, .7 = 0 .. m 1;

al,7 = aj-),r-/m, r = 2,...,k,

a, := aak.

In practice. one would use the algorithm repeatedly with m 2 rather than once with

a larger m. For, the computational cost is

nm(k - 1)((m- I)A - D).

with n the number of coefficients to start with. and A and D the cost of one addition.
respectively division. If, e.g.. the targeted refinement is to have 2,n coefficients, then the

-.,
@' .i
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cost ratio of the choice m = 2T ' versus the use of A applications of the algorithm, each time

with m = 2, is
2"((2 -- 1)A -+ D)(2 + 22---..- 2A')(A - D) "2 -A --D .

In addition, even though the repeated application, with in = 2, takes roughly twice as
-.. many divisions, these are just divisions by 2.

13. Shape preservation

In this section. we use knot insertion to prove the shape preserving property of B-
splines. Roughly speaking, this property says that a spline has the same shape as its
control polygon.

We begin with the

convex hull property If tj < t < tj + 1 , then s(t) is a convex combination of the k
B-spline coefficients a, -k+ ,... , a1 .

which follows from Algorithm 9 or directly from the facts that B-splines are nonnegative
(Sec. 1) and add up to 1 at every point (see (4.6)).

$ For a statement of the full shape preserving property, we recall that

S (a)

is the standard notation for the number of (strong) sign changes in a sequence a. Thus

S-(1,--1,1,-1)=3, S-(1,O, 1.-1)= 1, S-(OOO.O) =0.

Theorem 13. Variation diminution S-ts) _< S- (a): i.e., with x, < ".. < x,
arbitrary,

SS )< S-().

t* Proof. Recall from Sec. 11 that s(z), ... ,s(z,) is a subsequence of the sequence it
of coefficients for s with respect to the refined knot sequence t which contains each x, at
least k - I times. Hence it is sufficient to prove that S-(d) _< S (a). But this follows once
we know that S-(&) < S-(a), with t obtained by (11.3). i.e., by insertion of just one knot.
For this simple case, though, the conclusion is immediate if we think of the construction of
a from a as occurring in two steps: In the first step. we insert a, between a, I and a,, and
this does not increase the number of sign changes since each i, ih a convex combination
of its neighbors a,-, and a, in that new sequence. In the second step. we pull out h as a
subsequence. and this may only lower the number of sign changes.

% 7%
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Corollary. Shape preservation A spline crosses any straight line no more often
than does its control polygon. In particular. if the control polygon is monotone (convex),
then so is the spline.

Proof Let s be the spline and p the straight line. Then S-(s - p) is the number
of times the spline crosses the straight line. Since s - p is a spline, this is bounded by
S-(a - b), with a,b the B-spline coefficients of s, resp. p with iespect to t, and this equals
the number of times the control polygon Cat crosses the control polygon for p. But, as
we observed in Sec. 11. the control polygon for the straight line p is p itself. This proves

the general statement.

For the particulars. recall that a (continuous) function is monotone if and only if it
crosses any any constant function at most once, and that a function is convex if it crosses
any straight line at most twice (dipping first below and then rising above the line in case
it crosses it twice).

2 ....
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